# Synthesis and characterisation of ruthenium carbonyl complexes with cyclometallated ligands derived from senecialdimine 

Wilhelmus P. Mul ${ }^{\text {a }}$, Comelis J. Elsevier ${ }^{\text {a,* }}$, Michael A. Vuurman ${ }^{\text {a }}$, Wilberth J.J. Smeets ${ }^{\text {b }}$, Anthony L. Spek ${ }^{\text {b }}$, J.L. de Boer ${ }^{\text {c }}$<br> Netheriands<br>${ }^{1}$ Bijuoet Center for Biomolecular Research, Vakgroep Kristal- en Stractuurchemie, Unirersiteit Utrecht. Padualaan 8, 1584 CH Utrechti. Netherlana's<br>${ }^{\text {c Laborarorium voor Chemische Fysica, Rijksuniversiteit Groningen, Nijenborgh 4, } 9747 \text { AG Groningen. Netherlands }}$

Recerived 3 July 1996; revised 24 September 1996


#### Abstract

From thermal reactions of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ with senecialdimine, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}=\mathrm{NR}(\mathrm{R}=\mathrm{iPt}(\mathrm{a})$, t - $\mathrm{Bu}(\mathrm{b})$ ), in refluxing beptanes the following complexes have been isolated and characterised: $\mathrm{Ru}_{2}(\mathrm{CO})_{5}\left[\left(\mathrm{CH}_{3}\right), \mathrm{C}(\mathrm{H}) \mathrm{CC}(\mathrm{H}) \mathrm{NR}\right]$ (2a,b), $\left.\mathrm{Ru}_{2}(\mathrm{CO})_{6} \mathrm{IC}(\mathrm{H}) \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{H})=\mathrm{NR}\right] \quad(3 \mathrm{a}, \mathrm{b})$, $\left[\mathrm{HRu}_{6}(\mathrm{CO})_{18}\right]\left[2-\left\{\mathrm{C}(\mathrm{H})=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right]-4-\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right] \quad$ (4a). $\left.\mathrm{HRu}_{3}(\mathrm{CO})_{9}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{C}=\mathrm{NR}\right](5 \mathrm{a})$, and $\mathrm{Ru}_{2}(\mathrm{CO})_{6}\left[\mathrm{C}(\mathrm{H}) \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathrm{H}) \mathrm{C}=\mathrm{N}(\mathrm{H}) \mathrm{R}\right](6)$. The complexes 3a, 4a, and 6 b have been characterised by X -ray structure determinations. Crystals of 3a are monoclinic, space group $P 2_{1} / n$, with $a=11.217(4) \AA$ A. $b=$ $10.991(2) \AA, c=14.214(3) \AA, \beta=94.38(2)^{\circ}, Z=4$ and $R=0.0264$. Crystals of 4 are monoclinic, space group $P 2_{4} / R$, widh $a=10.483(2) \AA \AA, b=15.910(3) \AA$ A., $c=24.995(5) \AA \hat{A}, \beta=101.56(2)^{\circ} . Z=4$ and $R=0.0279$. Crystals of 6 b are monoclinic, space group $P 2_{1} / n$, with $a=11.449(2) \AA, b=12.012(2) \AA, c=13.561(3) \AA, \beta=102.69(2), Z=4$ and $R=0.0239$. The other conuplexes were characterised spectroscopically. Complex 6b contains a novel $\eta^{+}$-coordinated metallacyclopentadiene fragment, the second of iss kind reported so far. The anomalous $\eta^{3}$-coordination is atrituted to the presance of an amino substituent on one of the metallaned carbon atoms causing redistribution of electrons over the ligand skeleton. Possible formation pathways of the complexes are described


Keywords: Ruthenium: Carbonyl complexes: Cyclometallated ligands: Imine: X-ray diffraction: Cluster

## 1. Introduction

In the course of our study on the reactivity of ruthenium carbonyl complexes with monoazadienes some interesting cyclometallated ligand types have been obtained [1-3]. The first two isolable complexes from thermal reactions of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ and monoazadienes (MADs) of type $\mathrm{R}^{\prime} \mathrm{C}(\mathbf{H})=\mathbf{C}(\mathbf{H}) \mathrm{C}(\mathrm{H})=\mathrm{NR}$ are the dinuclear complexes $\mathrm{Ru}_{2}(\mathrm{CO})_{6}\left[\mathrm{R}^{\prime} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{NR}\right](1)$ and $\mathrm{Ru}_{2}(\mathrm{CO})_{6}\left[\mathrm{R}^{\prime} \mathrm{CH}_{2} \mathrm{CC}(\mathrm{H}) \mathrm{NR}\right]$ (2) (sce Scheme 1), boh of which contain a cyclometallated isomerised MAD ligand that bridges the intermetallic bond. Complex 2 is usually obtained as the minor product ( $10-40 \%$ ). To enable a more extensive study towards the reactivity of

2, which exhibits dynamical behaviour in solution [3] and interesting photochemical reactivity [4], improving its yield was an important goal. It was anticipated that substitution of $\mathrm{H}_{\mathrm{g}}$ by a methyl group ${ }^{\text {' }}$ would black the reaction path leading to 1 and hence 2 would become the major product. Furthermore, cyclometallation of the MAD ligand at other positions might become kinctically feasible, possibiy leading to new types of ligand.
In this paper we report on the products emerging from thermal reactions of ruthenium dodetiaitionyl and senecialdimine $\left(\mathrm{R}-\mathrm{SAI} ;\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathbf{C}(\mathbf{H}) \mathrm{C}(\mathrm{H})=\mathrm{NR}\right.$, $\mathbf{R}=\mathrm{iPt}, \mathrm{t}-\mathrm{Bu}$ ). One of the new urganometallic comr plexes obtained contains a novel $\mu_{2}-\boldsymbol{\eta}^{3}$-allyl-amino-

[^0][^1]

Scheme 1. Products formed during thernal reactions of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ will crotonaldimine.
carbene ligand, the second of its kind reported thus far. In another reaction product a remarkable coupling of two senecialdimines into a trisubstıtuted pyridinium moiety has taken place.

## 2. Experimental section

### 2.1. Materials and apparatus

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data wera obtained on Bruker ACIOO and WM250 spectrometers. IR spectra were recorded with Perkin-Elmer 283 and Nicolet 7199 B spectrophotometers using NaCl solution cells of 0.5 mm path length. Field desorption (FD) mass spectra [5] were obtained with a Varian MAT- 77 double focusing mass spectrometer with a combined EI/FI/FD source, fitted with a $10 \mu \mathrm{~m}$ tungsten wire FD-emitter containing carbon microneedles with an average length of $30 \mu \mathrm{~m}$, using emitter currents of $0-15 \mathrm{~mA}$. The ion source temperature was generally $90^{\circ} \mathrm{C}$.

The HPLC separations were performed with a modular Gilson liquid chromatographic system consisting of two 303 elution pumps, an 811 mixing chamber, a 7125 Rheodyne injector equipped with a 20 ml (analytical) or 2 ml (preparative) sample loop an 802 c manometric module, and an 111 B UV detector operated at 254 nm , all obtained from Meyvis, Netherlands. The system was controlled by an Apple Macintosh SE with Rainin software. Reversed phase columns; Hypersil ODS 5 -mm ( $100 \times 4.8 \mathrm{mmm}$; analytical and $250 \times 9.4 \mathrm{~mm}$; semi-preparative).

Solvents were carefully dried and distilled prior to use. All preparations were carried out under an atmosphere of dry nitrogen using Schlenk techniques. Silica gel for column chromatography (kieselgel 60, 70-230 mesh. Merck, Darmstadt, Germany) was dried before
use. $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ was used as-purchased from Strem Chemicals Inc. (USA).

The monoazadienes N -isopropyl-senecialdimine (iPrSAI) and $N$-tert-butyl-senecialdimine ( $t-\mathrm{Bu}-\mathrm{SAI}$ ) were prepared by condensation of senecialdehyde with the relevant amine according to standard procedures [6,7]. The senecialdimines were distiiied at 0.1 mm Hg and were stored uider an atmosphere of nitrogen at $-80^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{H})=\mathrm{N}-\mathrm{Pr} \quad\left(\mathrm{CDCl}_{3}\right.$, $100.1 \mathrm{MHz}, 298 \mathrm{~K}, \delta \mathrm{ppm}): 8.16(\mathrm{~d} .9 .5 \mathrm{~Hz}, \mathrm{C}(\mathrm{H})=\mathrm{N})$, $5.94(\mathrm{~m}, \mathrm{C}=\mathrm{C}(H)), 3.30\left(\mathrm{sept}, 6.5 \mathrm{~Hz}, \mathrm{~N}\left(\mathrm{C}(H) \mathrm{C}\left(\mathrm{H}_{3}\right)_{2}\right)\right.$, $1.88,1.83$ (m. m, $\left(\mathrm{CH}_{3}\right) \mathrm{C}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H})$ ), $1.15(\mathrm{~d}, 6.5 \mathrm{~Hz}$, NC(H)(C $\left.\left.\mathrm{H}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C} \quad \mathrm{NMR}$ for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{H})=\mathrm{N}-\mathrm{iPr} \quad\left(\mathrm{CDCl}_{3}, \quad 25.2 \mathrm{MHz}\right.$, $298 \mathrm{~K}) ; 156.8(\mathrm{C}(\mathrm{H})=\mathrm{N}) ; 145.9\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}\right) ; 125.8$ $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}\right) ; \quad 61.4 \quad\left(\mathrm{NC}^{(H)}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 26.5, \quad 18.6$ $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}\right) ; 24.3\left(\mathrm{NC}(\mathrm{H})\left(\mathrm{CH}_{3}\right)_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{H})=\mathrm{N}-\mathrm{t}-\mathrm{Bu}\left(\mathrm{CDCl}_{3}\right.$, $100.1 \mathrm{MHz}, 298 \mathrm{~K}, \delta \mathrm{ppm}): 8.17(\mathrm{~d}, 9.0 \mathrm{~Hz}, \mathrm{C}(H)=\mathrm{N})$, $5.94\left(\mathrm{~m}, \mathrm{C}=\mathrm{C}\left(\mathrm{H}^{\prime}\right), 1.85,1.79\left(\mathrm{~m}, \mathrm{~m},\left(\mathrm{CH}_{3}\right), \mathrm{C}=\mathrm{C}(\mathrm{H})\right)\right.$, 1.14 (s, $\left.\mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C} \quad \mathrm{NMR}$ for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{H})=\mathrm{N}-\mathrm{t}-\mathrm{Bu} \quad\left(\mathrm{CDCl}_{3}, \quad 25.2 \mathrm{MHz}\right.$, $298 \mathrm{~K})^{-1} 153.7(\mathrm{C}(\mathrm{H})=\mathrm{N})$ : $145.0\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}\right)$; 128.1 $\left.\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}\right) ; 56.6\left(\mathrm{NCCH}_{3}\right)_{3}\right) ; 29.7\left(\mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}\right):$ 16.3, $18.4\left(\left(\mathrm{CH}_{3}\right), \mathrm{C}=\mathrm{C}\right)$.

### 2.2. Synthesis of $\mathrm{Ru}_{2}\left(\mathrm{CO}_{6}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(H) \mathrm{CC}(H) N R\right]\right.$ ( $R$

 $=i \operatorname{Pr}(2 a), t-B u(2 b))$A solution of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}(0.64 \mathrm{~g} ; 1 \mathrm{mmol})$ and R-SAI ( $\mathrm{R}=\mathrm{iPr}, \mathrm{t}-\mathrm{Bu} ; 3 \mathrm{mmol}$ ) in 50 ml of heptanes was stirred at $100^{\circ} \mathrm{C}$ for 24 h . After this period the solvent was evaporated under vacuum and the residue was fractionated on silica. Elution with hexane afforded a pale yellow fraction of $\left.\mathrm{Ru}_{2}\left(\mathrm{CO}_{6}\right)_{6}\left[\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{H}) \mathrm{CC}(\mathrm{H}) \mathrm{NR}\right](\mathrm{R}$ $=\mathrm{iPr}(2 \mathrm{a}), \mathrm{t}-\mathrm{Bu}(2 \mathrm{~b})$ ) in a yield of about $60 \%$.

Data for 2a. 'H NMR ( $\left.\mathrm{CDCl}_{3}, 100 . \mathrm{I} \mathrm{MHz}, 298 \mathrm{~K}\right)$ : 6.89 (s, $\mathrm{CC}(H) \mathrm{N}), 2.59,2.40(2 \times$ sept, 6.5 Hz , $\left.\mathrm{NC}(H)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{CC}(H)\left(\mathrm{CH}_{3}\right)_{2}\right), 1.09, \quad 0.90(2 \times \mathrm{d}$, $\left.6.5 \mathrm{~Hz}, \mathrm{NC}(\mathrm{H})\left(\mathrm{CH}_{3}\right)_{2}, \quad \mathrm{CC}(\mathrm{H})\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 62.9 \mathrm{MHz}, 263 \mathrm{~K}\right): 197.1(6 \times \mathrm{CO}), 148.2$ $(\mathrm{CC}(\mathrm{H}) \mathrm{N}), 107.1(\mathrm{CC}(\mathrm{H}) \mathrm{N}), 56.1\left(\mathrm{NC}(\mathrm{H})\left(\mathrm{CH}_{3}\right)_{2}\right), 35.3$ $\left.\left(\mathrm{CC}(\mathrm{H}) \mathrm{CH}_{3}\right)_{2}\right), \quad 25.7, \quad 25.1 \quad\left(\mathrm{NC}(\mathrm{H})(\mathrm{CH})_{3}\right)_{2}$, $\left.\left.\mathrm{CC}(\mathrm{H})(\mathrm{CH})_{3}\right)_{2}\right) ;$ IR $\left(\nu(\mathrm{CO}) \mathrm{cm}^{-1}\right.$, hexane solution): 2075 (m), 2043 (vs), 2003 (s), 1991 (s), 1979 (m). Anal. Found (calcd) for $\mathrm{Ru}_{2} \mathrm{C}_{1+} \mathrm{H}_{15} \mathrm{NO}_{6}$ (2a): C, 33.99 (33.94); H, 3.14 (3.05); N, 2.99 (2.83); FD/MS: m/e 495 (495).

Data for 2 b . ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 100.1 \mathrm{MHz}, 298 \mathrm{~K}\right)$ : 6.92 (s. $\mathrm{CC}(H) \mathrm{N}), 2.59$ (sept, $\left.6.5 \mathrm{~Hz}, \mathrm{CC}(H)\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.09\left(\mathrm{~d}, 6.5 \mathrm{~Hz}, \mathrm{CC}(\mathrm{H})\left(\mathrm{CH}_{3}\right)_{2}\right), 0.90\left(\mathrm{~s}, \mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 25.2 \mathrm{MHz}, 263 \mathrm{~K}\right): 197.6(6 \times \mathrm{CO})$, $\left.146.2(\mathrm{CC}(\mathrm{H}) \mathrm{N}), 106.1(\mathrm{CC}(\mathrm{H}) \mathrm{N}), 55.6\left(\mathrm{NC}(\mathrm{CH})_{3}\right)_{3}\right)$, $\left.\left.35.7\left(\mathrm{CC}(\mathrm{H}) \mathrm{CH}_{3}\right)_{2}\right), 30.5\left(\mathrm{NC}(\mathrm{CH})_{3}\right)_{3}\right), 25.4$ $\left.\left(\mathrm{CC}(\mathrm{H})(\mathrm{CH})_{3}\right)_{2}\right)$; IR $\left(\nu(\mathrm{CO}) \mathrm{cm}^{-1}\right.$, hexane solution):

2074 (m), 2041 (vs), 2002 (s), 1989 (s), 1978 (m). Anal. Found (calcd) for $\mathrm{Ru}_{2} \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{6}$ (2b): C, 35.49 (35.36); H, 3.37 (3.37); N, 2.73 (2.75); FD-MS: m/e 509 (509).

### 2.3. Synthesis of $\mathrm{Ru}_{2}(\mathrm{CO})_{6} /(\mathrm{CH}) \mathrm{Cl}_{4}\left(\mathrm{CH}_{4}\right) \mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{H}) \mathrm{N}-$ iPr] (3a)

A solution of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}(0.64 \mathrm{~g} ; 1 \mathrm{mmol})$ and $\mathrm{Pr}-\mathrm{SAl}$ ( 3 mmol ) in 50 ml of heptanes was stirred at reflux (ail bath temperature $120^{\circ} \mathrm{C}$ ) for 72 h . After this periov the reaction mixture was filtered over a short column ( 3 cm ) of silica and the filtrate was evaporated to dryness. The residue was chromatographed on silica. Elution with hexane afforded a pale yellow band of $\mathbf{2 a}(45 \%)$. Subsequent elution with hexane-diethyl ether ( $9: 1$ ) gave a second yellow band which contained $\mathrm{Ru}_{2}(\mathrm{CO})_{6}\left[(\mathrm{CH}) \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{H}) \mathrm{N}\right.$-iPr] (3a) in a yield of about $20 \%$. Yellow arystals of 3 a suitable for X-ray diffraction analysis were outained by cooling a concentrated solution of 3 a in hexane at $-90^{\circ} \mathrm{C}$.

Data for 3a. ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ): 8.49 (d, $\left.2.3 \mathrm{~Hz}, \mathrm{C}(\mathrm{H}) \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{C}\right), 7.99(\mathrm{~d}, 5.5 \mathrm{~Hz}, \mathrm{~N}=\mathrm{C}(H), 3.45$ (sept, $\left.6.5 \mathrm{~Hz}, \mathrm{NC}(H)\left(\mathrm{CH}_{1}\right)_{2}\right), 3.30(\mathrm{dd}, 5.5 \mathrm{~Hz}, 2.3 \mathrm{~Hz}$, $\mathrm{C}(H) \mathrm{C}(\mathrm{H})=\mathrm{N}), 2.47\left(\mathrm{~s}, \mathrm{C}(\mathrm{H}) \mathrm{C}\left(\mathrm{C} \mathrm{H}_{1}\right) \mathrm{C}(\mathrm{H})\right) 1.07,0.90$ (d, $\left.6.5 \mathrm{~Hz}, \mathrm{NC}(\mathrm{H})\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}, 263 \mathrm{~K}$ ): 202.1, 198.3, 192.5 ( $3 \times \mathrm{CO}$ ). $173.8(\mathrm{~N}=\mathrm{C}(\mathrm{H})$ ). 144.7 $\left(\mathrm{C}(\mathrm{H}) \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathrm{H})\right), \quad 104.6\left(\mathrm{C}(\mathrm{H}) \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathrm{H})\right), \quad 64.3$ $\left.\left(\mathrm{NC}(\mathrm{H})(\mathrm{CH})_{3}\right)_{2}\right), \quad 51.3 \quad(\mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{H})=\mathrm{N}), \quad 29.9$ $\left.\left(\mathrm{C}(\mathrm{H}) \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathrm{H})\right), 22.9,22.0\left(\mathrm{NC}(\mathrm{H})(\mathrm{CH})_{3}\right)_{2}\right) ;$ IR ( $\nu(\mathrm{CO}) \mathrm{cm}^{-1}$, hexane solution): 2072 (s), 2031 (vs), 2001 (vs), 1988 (s), 1973 (m), ( $\left.\mathrm{mi}^{-}=-\mathrm{N}\right)$, KBr): $1631 \mathrm{~cm}^{-1}$. Anal. Found (calcd) for $\mathrm{Ru}_{2} \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{6}$ (3a): C, 34.18 (34.08); H, 2.70 (2.66); N, 2.82 (2.84): FD-MS: $m$ /e 493 (493).
2.4. Synthesis of $\left[\mathrm{HRu}_{6}\left(\mathrm{CO}_{4}\right]^{-}\left[2-/ \mathrm{C}(\mathrm{H})=\mathrm{ClCH}_{3}\right)_{2} /-\right.$ $\left.4-\mathrm{CH}_{3}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right]^{+}$(4a)

A solution of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}(0.64 \mathrm{~g} ; 1.0 \mathrm{mmol})$ and $\mathrm{iPr}-$ $\mathrm{SAI}(0.27 \mathrm{~g} ; 2 \mathrm{mmol})$ in 50 ml of heptanes was stirred at reflux for 20 h . After removal of the solvent under vacuum, the residue was chromatographed on silica. Elution with diethyl ether gave an orange band containing a mixture of compounds including 2a and 3a. Subsequent elution with dichloromethane afforded a red-brown band of $\left[\mathrm{HRu} \mathrm{o}_{6}(\mathrm{CO})_{18}\right]^{-[2-}$ $\left.\left\{\mathrm{C}(\mathrm{H})=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right\}-4-\mathrm{CH}_{3}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right]^{+}$(4a) in a yield of $20 \mathrm{mg}(3 \%)$. Dark brown crystals of 4 a suitable for X -ray diffraction analysis were ohtained by conling a saturated solution of $4 \mathbf{4}$ in dichloromethane-diethyl ether at $-90^{\circ} \mathrm{C}$.

Data for $4 \mathbf{a r}^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 250.1 \mathrm{MHz}, 297 \mathrm{~K}\right)$ : 16.46 (s, hydride), 8.33 (d, 6.0 Hz ), 7.69 (d, 6.0 Hz ), 7.55 (s), 6.26 (s), 5.10 (sept, $\left.6.0 \mathrm{~Hz}, \mathrm{NC}(H)\left(\mathrm{CH}_{3}\right)_{2}\right)$, 2.67 (s), 2.12 (d, 1.2 Hz ), 1.87 (d, 1.2 Hz ). $1.61^{(\mathrm{d}}$,
$\left.6.0 \mathrm{~Hz}, \mathrm{NC}(\mathrm{H})\left(\mathrm{CH}_{3}\right)_{2}\right)$; IR (dichsaromethane, $\mu(\mathrm{CO})$ $\mathrm{cm}^{-1}$ ): 2022 (s), 1956 (vw) (lit.: 2020 (s). 1953 (vw) [8]). final. Found (ialcd) for $\mathrm{Ru}_{6} \mathrm{C}_{31} \mathrm{H}_{21} \mathrm{NO}_{18}$ (48): C . 28.92 (28.60); H, 1.77 (1.63); N. 1.06 (1.08); FD-MS: $m / e 190(190)$.

### 2.5. Suntheris of $\mathrm{Ru}_{2}\left(\mathrm{CO}_{n} /(\mathrm{CH}) \mathrm{ClCH}_{3}\right) \mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{H}) \mathrm{N}-1-$ $\mathrm{Bu}]$ (3b) and $\mathrm{Ru}_{2}\left(\mathrm{CO}_{5}\left[(\mathrm{CH}) \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathrm{H}) \mathrm{CN}(\mathrm{H})-\mathrm{t}-\mathrm{Bu}\right]\right.$ (6b)

A solution of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}(0.64 \mathrm{~g} ; 1 \mathrm{mmol})$ and t -BuSAI ( 3 mmol ) in 50 ml of heptanes was stirred at reflux for 24 h . After this period the solvent was removed under vacuum and the red-brown residue chromatographed on silica. Elution with hexane gave a pale yellow band of $\mathbf{2 b}(0.22 \mathrm{~g}$ : $40 \%$ ). Subsequent elution with hexane-diethyl ether (2:1) gave a yellow band of $\mathrm{Ru}_{3}(\mathrm{CO})_{6}\left[(\mathrm{CH}) \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{H}) \mathrm{N}-\mathrm{t}-\mathrm{Bu}\right]$ (3b) and $\mathrm{Ru}_{2}(\mathrm{CO})_{6}\left[(\mathrm{CH}) \mathrm{C}\left(\mathrm{CH}_{3} \mathrm{C}(\mathrm{H}) \mathrm{CN}(\mathrm{H})-\mathrm{t}-\mathrm{Bu}\right]\right.$ (6b) in a total yield of 0.36 g (ratio $\mathbf{3 b}: 6 \mathrm{~b}$ was about $1: 2$ ). Separation of 3 b and 6 b could be achieved by preparative HPLC on a reversed phase column. To this end a mixture of 3b and 6 b ( $0.05 \mathrm{~g} / \mathrm{run}$ ) was dissolved in a minimam amount of dichloromethane and passed through a semipreparative RP-HPLC column using an isocratic mixture of methanol-water (87:13) as the mobile phase at a flow rate of $2 \mathrm{mi}^{1} \mathrm{~min}^{-1}$. Two fractions were collected (first fraction ( 6 h ): $27-30 \mathrm{ml}$; second fraction (3b): $32.5-35.5 \mathrm{ml}$ ). After a cotal of 22 runs the solvent of the pooled fractions was removed under vacumm affording 3b and 6b as spectroscopically and analytically pure compounds. Yellow crystals of $\mathbf{6 b}$ suitable for $X$-ray diffraction analysis were obtained by cooling a concentrated solution of 6 b in hexane at $-90^{\circ} \mathrm{C}$.

Data for 3h. ${ }^{1} \mathrm{H}$ NMR (CDCI ${ }_{3}$. 100.1 MHz .298 K ): 8.48 (d. $\left.2.5 \mathrm{~Hz} . \mathrm{C}(H) \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{C}\right) .8 .21$ (d. 6.0 Hz , $\mathrm{N}=\mathrm{C}(H)$ ), $3.32(\mathrm{dd}, 6.0 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, \mathrm{C}(H) \mathrm{C}(\mathrm{H})=\mathrm{N})$, $2.46\left(\mathrm{~s}, \mathrm{C}(\mathrm{H}) \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathrm{H})\right) \quad 1.08\left(\mathrm{~s}, \mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}\right){ }^{13} \mathrm{C}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 25.2 \mathrm{MHz}, 263 \mathrm{~K}\right): 176.3(\mathrm{~N}=\mathrm{C}(\mathrm{H}))$. $145.3\left(\mathrm{C}(\mathrm{H}) \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathrm{H})\right), 104.4\left(\mathrm{C}(\mathrm{H}) \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathrm{H})\right)$, $\left.61.8\left(\mathrm{~N} C(\mathrm{CH})_{3}\right)_{3}\right), \quad 51.0 \quad(\mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{H})=\mathrm{N}), \quad 31.7$ $\left.\left(\mathrm{NC}(\mathrm{CH})_{3}\right)_{3}\right), 29.9\left(\mathrm{C}(\mathrm{H}) \mathrm{C}\left(\mathrm{CH}_{3} \mathrm{KC}(\mathrm{H})\right) ;\right.$ IR $(\nu(\mathrm{CO})$ $\mathrm{cm}^{-1}$, hexane solution): 2073 (m), 2031 (vs), 1999 (s), 1987 (m), 1973 (w). Anal. Found (calcd) for $\mathrm{Ru}_{3} \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{\mathrm{b}}$ (3b): C, 35.24 (35.51); H, 2.91 (2.98); N, 2.67 (2.76); FD-MS: $m / e^{507}$ (507).

Data for 6b. ${ }^{\mathrm{l}} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 109.1 \mathrm{MHz}, 298 \mathrm{~K}\right)$ : $6.71\left(\mathrm{~d}, 2.5 \mathrm{~Hz}, \mathrm{C}(H)=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right), 5.57(\mathrm{~N}(H)), 4.91(\mathrm{~d}$, $2.5 \mathrm{~Hz}, \mathrm{C}(H)=\mathrm{CN}), 2.31\left(\mathrm{~s}, \mathrm{C}(\mathrm{H})=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right) 1.35$ ( s , $\left.\mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{17} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 62.9,248 \mathrm{~K}\right): 211.3$ $(\mathrm{C}(\mathrm{H})=\mathrm{CN}(\mathrm{H})), 200.5,199.8,195.9(3 \times \mathrm{CO}) .197 .6$ $(3 \times \mathrm{CO}), \quad 135.0 \quad\left(\mathrm{C}(\mathrm{H})=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right), 124.6$ $\left(\mathrm{C}(\mathrm{H})=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right), \quad 69.7 \quad\left(\mathrm{C}_{\left(\mathrm{CH}_{3}\right)} \mathrm{C}(\mathrm{H})=\mathrm{C}\right), \quad 55.5$ $\left(\mathrm{NC}_{\left.\left.(\mathrm{CH})_{3}\right)_{3}\right),}^{\left.29.0 \quad\left(\mathrm{NC}(\mathrm{CH})_{3}\right)_{3}\right), 23.0}\right.$ $\left(\mathrm{C}(\mathrm{H})=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right) ; \operatorname{IR}\left(\nu(\mathrm{CO}) \mathrm{cm}^{-1}\right.$. hexanc solution): 2071 (m). 2038 (s), 2001 (s). 1989 (s), 1984 (w). 1966
(m): IR ( $\left.\nu(\mathrm{NH}) \mathrm{cm}^{-1}, \mathrm{KBr}\right)$ : 3420. Anal. Fuand (caled) for $\mathrm{Ru}_{2} \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{4}$ (6b): C. 35.46 (35.5I): H, 3.04 (2.98) ; N. 2.70 (2.76); FD-MS: $m / e 507$ (507).

### 2.6. Structure determination and refinement of 3a. 4a and $6 b$

Crystal data and numerical details of the structure determinations are given in Table 1. Crystals of the three compounds were glued on glass-fibres and transferred to an Enraf-Nonius CAD-4 diffractometer for data collection at either room temperature (3a and 4a) or $๕$ at $100 \mathrm{~K}(6 \mathrm{~b})$. Unit cell parameters were determined from a least squares treatment of SET4 setting angles and were checked for the presence of higher latrice symmetry [9]. All data were collected in $\omega-2 \theta$ scan mode, data were corrected for Lp and for the observed linear decay of the intensity control reflections: redundant data were merged into a snique dataset. Absorption correction was applied using the difabs [10] method. The
structures were solved with direct methods (shelxs86 [11]) followed by subsequent difference Fourier syntheses. Refinement on $F^{2}$ using all unique reflections was carried out by full matrix least squares techniques.

The hydride atom of 4 a and the (N,C)-H atoms of 3a and 6b werc located from difference Fourier maps and included in the refinement with free positional and isotropic themal parameters. Other H -atoms of the three complexes were introduced on calculated positions and included in the refinement riding on their carrier atoms will isoropic thernal parmeters related to the $U_{\text {eq }}$ of the carrier atoms. All non-H atoms were refined with anisotropic thermal parameters. Weights were introduced in the final refinement cycles.

Neutral atom scattering factors and anomalous dispersion factors were taken from Ref. [12]. All calculations were performed with shelxl93 [13] and the plaTON package [14] (geometrical calculations and illustrations) on a DEC-5000 cluster.

Table 1
Crystil data and details of the structure determination

|  | 3 la | 4 a | (ib) |
| :---: | :---: | :---: | :---: |
| Cristal data |  |  |  |
| Formula | $\mathrm{C}_{1.1} \mathrm{H}_{18} \mathrm{NO}_{6} \mathrm{Ru}_{7}$ | $\mathrm{HRu}_{6}(\mathrm{CO})_{1 \times}{ }^{\prime} \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}$ | $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{6} \mathrm{Ru}_{2}$ |
| Mol. wit. | 493.40 | 1301.92 | 507.43 |
| Crystal system | monoclinic | monoclinic | monoclinic |
| Space group | $P 2_{1} / \mathrm{n}$ ( Nr .14$)$ | $P 2_{1} / n\left(\mathrm{~N}_{\text {r }}\right.$. 14 ) | $P 2_{1} / \mathrm{n}$ ( $\mathrm{N}, 14$ ) |
| a. b, c ( $\AA$ ) | 11.214(4), 10.991(2), 14.214(3) | 10.483(2), 15.910.3), 2-.995(5) | 11.499 (2). 12.0132).13.561(3) |
| $\beta$ (deg) | $94.38(2)$ | 101.56(2) | 102.6921 |
| $v\left(\dot{A}^{*}\right)$ | 1747.3(8) | 4084(1) | $1827.4(6)$ |
| 2 | $+$ | 4 | $+$ |
| $D_{\text {culc }}\left(\mathrm{gcma}^{-3}\right)$ | 1.876 | 2.117 | 1.844 |
| $F$ (0R0) | 960 | 2488 | 992 |
| $\mu\left(\mathrm{cm}^{-1}\right)$ | 17.5 | 22.3 | 16.8 |
| Crystal size (mm ${ }^{3}$ ), colaur | $0.45 \times 0.39 \times 0.14$, yellow | $0.08 \times 0.18 \times 0.30$, dark-brown | $0.12 \times 0.15 \times 13.33$. yellowish |
| Data collection |  |  |  |
| Temperature ( K ) | 298 | 298 | 100 |
| $\theta_{\text {mina }} \boldsymbol{\theta}_{\text {max }}$ | 1.44, 25.00 | 0.83, 23.00 | 1.54. 27.50 |
| Radiation | MoKa (Zi-filtered), 0.71073 ${ }^{\circ}$ | MoKat (Zr-filtered), $0.71073 \AA$ |  |
| $\pm \omega$ (deg) | $0.80 \div 5{ }^{2} 5 \tan \theta$ | $0.40+0.35 \tan \theta$ | $0.85+0.35 \tan \theta$ |
| Hor. and vert. aperiure (mm) | 330.40 | 3.00, 3,00 | 4.00, 4.50 |
| X-ray exposure time (h) | i +1 | 113 | 125 |
| Linear decay (\%) | 0.0 | 0.0 | 1.5 |
| Reference reflections | 200.002 | 200.020.00-4 | 21-3.2-1-3.-12-2 |
| Data set | $h-13: 13: k-13: 0: 1-16: 16$ | h-11:11: k0:17: $/-27: 0$ | h-18:15: $k-19: 19: 1-21: 14$ |
| Total fata | 6499 | 6075 | 8402 |
| Total unique dita | 3073 ( $R_{1}=0.0287$ ) | 5668 | $4201\left(R_{\mathrm{i}}=0.0385\right)$ |
| Observed data | 3073 | $5660\left(F_{10}^{2}>-30\left(F_{0}^{2}\right)\right.$ ) | 4199 |
| dafabs correction range | 0.716-1.182 | 0.780-1.329 | 0.736-1.593 |
| Refinement |  |  |  |
| No. of refl. and params. | 3073, 227 | 5660, 514 | +199. 233 |
| Weighting scheme | $\begin{aligned} & w=1.0 /\left[\sigma^{2}\left(F_{6}^{2}\right)\right. \\ & \left.+(0.0370 P)^{2}+0.60 P\right] \end{aligned}$ | $\begin{aligned} & w-1.0 /\left[\sigma^{2}\left(F_{v}^{2}\right)\right. \\ & \left.+(0.0285 P)^{2}+3.68 P\right] \end{aligned}$ | $\begin{aligned} & W^{1}-1.0 /\left[v^{2}\left(F_{10}^{2}\right)\right. \\ & +\left(0.028(P P)^{2}+0.42 P\right] \end{aligned}$ |
| Final $R_{3}, n R_{2}, 5$ | 0.0264, 0.0691, 1.037 | 0.0279.0.0659, 1.073 | 0.0239, 0.0509, 1.028 |
| $(J / \sigma)_{a t}$ and max. in final cycle | 0.006. 0.001 | $0.00,0.003$ | 0.000.0.001 |
| Min. and max. resd. dens. $\left(\mathrm{e}^{-} \mathrm{A}^{3}\right)$ | -0.52. 0.77 | -0.42. 0.52 | -0.80, 0.80 |

## 3. Results and discussion

### 3.1. Formation of the complexes

The formation of products resulting from reactions between $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ and senceialdimine, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{H})=\mathrm{NR}$ (R-SAI; $\left.\mathrm{R}=\mathrm{iPr}, \mathrm{t}-\mathrm{Bu}\right)$. depends on the reaction temperature and the R -substituent.

The reaction of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ with $\mathrm{iPr}-\mathrm{SAI}$ at $80-100^{\circ} \mathrm{C}$ in heptane solution results in the formation of $\left.\mathrm{Ru}_{2}\left(\mathrm{CO}_{6}\right)_{6}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{H}) \mathrm{CC}(\mathrm{H}) \mathrm{N}-\mathrm{iPr}\right]$ (2a) as the majur product (ca. 60\%) and a variety of by-products in small amounts ( $<5 \%$ ). When this reaction is performed in refluxing heptane, compound $\mathbf{2 a}$ is still the major product, but some of the by-products are formed in larger amounts. Of these the yellow compound $\mathrm{Ru}_{2}(\mathrm{CO})_{6}\left[\mathrm{C}(\mathrm{H}) \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{H})=\mathrm{N}-\mathrm{iPr}\right]$ (3a), which contains a double metallated and dehydrogenated ( -2 H ) iPr-SAI ligand, and the red-brown ionic complex $\left[\mathrm{HRu}_{6}(\mathrm{CO})_{14}\right]^{-}\left[2-\left\{\mathrm{C}(\mathrm{H})=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right\}-4-\mathrm{CH}_{3}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}-\mathrm{iPr}\right]^{+}$ (4a) could be purified and isolated by column chromatography. The presence of the $\mathrm{H}_{2}$ adduct $\mathrm{HRu}_{3}(\mathrm{CO})_{9}\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{H}^{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{N}-\mathrm{iPr}\right]\right.$ (5a) in the reaction mixture could be established spectroscopically as well, but all attempts to purify this compound have failed thus far. ${ }^{\text {² }}$

The thermal reaction of $\mathrm{Ru}_{3}(\mathbf{C O})_{12}$ with t -Bu-SAI proceeds considerably slower and gives $\left.\mathrm{Ru}_{2}(\mathrm{CO})_{6}\left[\mathrm{CCH}_{3}\right)_{2} \mathrm{C}(\mathrm{H}) \mathrm{CC}(\mathrm{H}) \mathrm{N}-\mathrm{t}-\mathrm{Bu}\right]$ (2b), $\mathrm{Ru}_{2}(\mathrm{CO})_{6}\left[\mathrm{C}(\mathrm{H}) \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{H})=\mathrm{N}-\mathrm{t}-\mathrm{Bu}\right]$ (3b), and $\mathrm{Ru}_{2}(\mathrm{CO})_{6}\left[\mathrm{C}(\mathrm{H}) \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathrm{H}) \mathrm{CN}(\mathrm{H})-\mathrm{t}-\mathrm{Bu}\right]$ ( 6 b ) as the major products, whereas less by-products are formed compared to the reaction with iPr -SAI. The yield of $\mathbf{3 b}$ and $6 \mathbf{b}$ increases with the reaction temperature (see Section 2). Compound 3b can thermally not be converted into the isomeric compound $\mathbf{6 b}$ or vice versa. An overview of these reactions is presented in Scheme 2. The complexes 3a, 4a and 6b have been characterised crystallographically. The complexes 2a, 3b, and 5a have been characterised on the basis of their analytical and spectroscopic data (see Section 2).

### 3.2. Structural and spectroscopic characteristics of the complexes

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 2 a and 2 b show that these complexes are fluxional in solution, just as their structural analogues $\mathrm{Ru}_{2}\left(\mathrm{CO}_{6}\left[\mathrm{RCH}_{2} \mathrm{CC}(\mathrm{H}) \mathrm{NR}^{\prime}\right]\right.$ of

[^2]which an X -ray structure has been determined for $\mathrm{R}=$ $\mathrm{CH}_{3}, \mathrm{R}^{\prime}=\mathrm{t}$-Bu [15]. For example. at 298 K the iPr methyl protons of $\mathbf{2 a}$ and $\mathbf{2 b}$ lack diastereotopicity and at 263 K the six CO ligands give rise to single sharp resonances in the ${ }^{13} \mathrm{C}$ NMR spectra. The fluxional process for 2 involves a 'winds'hield wiper' process of the azaallyl ligand in combination with local scrambling of the CO ligands [16].

The molecular geometry of 3 a along with the adopted numbering scheme are shown in Fig. 1. Selected bond lengths and bond angles are given in Table 2. The organometallic compound 3 a consists of a 'saw-horse'type $\mathrm{Ru}_{2}(\mathrm{CO})_{6}$-core and a formally $6 \mathrm{e}^{-}$-donating $\sigma$ $\mathrm{N}, \mu_{2}-\eta^{3}$-allyl-imine ligand which bridges the single Ru-Ru bond of 2.7773 (11) A. The metal carbonyl part exhibits normal structural features. The $\mathrm{Ru}-\mathrm{C}(\mathrm{O})$ distances fall within the region of $1.88-1.92$ A. except the rather long Ru(1)-C(2) distance of 1.964 (4) $\AA$. The elongation of the latter can readily be ascribed to the trans-influence exerted by the carbon atom $\mathrm{C}(10)$. The cyclometallated $\operatorname{iPr}-S A I$ ligand is part of a six-membered azaruthenacycle and coordinated to Ru(1) via a $\sigma$ - N bond and a $\sigma$ - $\mathrm{C}(10)$ bond and $\eta^{3}$-coordinated to $\mathrm{Ru}(2)$ via the $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ moiety. The $\mathrm{Ru}(1)-\mathrm{N}$ bond length of $2.115(3) \AA$ is indicative for a nomal dative bond and the imine $\mathrm{N}-\mathrm{C}(7)$ bond length of $1.275(5) \AA$ A points to a localized double bond. The carbon atom $\mathrm{C}(10)$ is $\sigma$-coordinated to $\mathrm{Ru}(1)$, the bond distance of $2.072(4) \AA$ being slightly shorter than for normal $\mathrm{Ru}-\mathrm{C}$ bonds [17]. The Ru-C distances of the Ru(2)-allyl unit are nearly equal (2.210(4)-2.218(4) $\AA$ ). The C-C distances within the allyl unit, bowever, differ significantly; the $\mathbf{C ( 8 ) - C ( 9 ) ~ a n d ~} \mathbf{C}(9)-C(10)$ distances amount to $1.439(6)$ and $1.381(6) \AA$ respectively. The rather short $\mathrm{C}(7)-\mathrm{C}(8)$ distance of $1.442(6) \mathrm{A}$ indicates effective electron delocalisation between the unsaturated imine and allyl fragments. This delocalisation might be the cause for the asymmetry in the allyl fragment. The $\sigma-\mathrm{N}, \mu_{2}-\eta^{3}$-allyl-imine ligand and its coordination to the dinuclear metal core in 3 closely resembles that encountered in $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left[\mathrm{C}\left(\mathrm{OCH}_{3}\right) \mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{H}) \mathrm{C}\left(\mathrm{OCH}_{3}\right)=\mathrm{NR}\right]$ [19],

The ${ }^{1}$ H NMR resonances of 3a and 3b could readily be assigned on the basis of their chemical shifts and coupling patterns. On the basis of a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ - $\operatorname{Cos} \mathbf{Y}$ spectrum for 3a, the ${ }^{13} \mathrm{C}$ NMR resonances cond be attributed as well. Both the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are in agreement with the molecular structure of 3a in the solid state.

The molecular structure of 4 a is shown in Fig. 2. Selected bond lengths and angles are given in Table 3. The molecular structure of ta contains two residnes, clearly revealing its ionic character. It consists of an anionic inorganic part, the well known $\left[\mathrm{HRu}_{6}(\mathrm{CO})_{18}\right]^{-}$ cluster and a cationic organic pant, a trisubstituted pyridinium ion. In analogy with the reported structure of

$$
\mathrm{Ru}_{3}(\mathrm{CO})_{12}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{H})=\mathrm{NR}
$$

heptane $\mid 80-100^{\circ} \mathrm{C}$


2a,b

$3 a, b$
$\times \Delta$
$4 a$

$5 \mathbf{5}$


6b

Scherne 2. Overview of the products formed Juring thermal reactions of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ with seneciakdimine.
this $\left[\mathrm{HRu}_{6}(\mathrm{CO})_{18} \mathrm{~J}^{-}\right.$cluster, the current $\mathrm{Ru}_{6}$-core has twn equivalent faces that are approximately equilateral (mean Ru-Ru, $2.874(16) \AA$ (lit.: $2.877(13) \AA$ ) [8]). These are slightly twisted from $O_{\mathrm{h}}$ symmetry so the remaining hond lengths are alternately long (mean Ru-Ru,


Fig. I. Themal ellipsoid plot of Ja drawn at the $40 \%$ probability level, with the adopted numbering scherne.

Table 2
Selected bond distances ( $\AA$ ) and bond angles (deg) of $\mathbf{3 a}$

| $\mathrm{Ru}(1)-\mathrm{Ru}(2)$ | $2.7773(11)$ | $\mathrm{Ru}(2)-\mathrm{C}(8)$ | $2.217(4)$ |
| :--- | :---: | :--- | ---: |
| $\mathrm{Ru}(1)-\mathrm{N}(1)$ | $2.115(3)$ | $\mathrm{Ru}(2)-\mathrm{C}(9)$ | $2.210(4)$ |
| $\mathrm{Ru}(1)-\mathrm{C}(1)$ | $1.917(4)$ | $\mathrm{Ru}(2)-\mathrm{C}(10)$ | $2.218(4)$ |
| $\mathrm{Ru}(1)-\mathrm{C}(2)$ | $1.964(4)$ | $\mathrm{N}(1)-\mathrm{C}(7)$ | $1.275(5)$ |
| $\mathrm{Ru}(1)-\mathrm{C}(3)$ | $1.887(4)$ | $\mathrm{N}(1)-\mathrm{C}(12)$ | $1.493(5)$ |
| $\mathrm{Ru}(1)-\mathrm{C}(10)$ | $2.072(4)$ | $\mathrm{C}(7)-\mathrm{C}(8)$ | $1.442(6)$ |
| $\mathrm{Ru}(2)-\mathrm{C}(4)$ | $1.907(6)$ | $\mathrm{C}(8)-\mathrm{C}(9)$ | $1.439(6)$ |
| $\mathrm{Ru}(2)-\mathrm{C}(5)$ | $1.906(4)$ | $\mathrm{C}(9)-\mathrm{C}(10)$ | $1.381(6)$ |
| $\mathrm{Ru}(2)-\mathrm{C}(6)$ | $1.90(5)$ | $\mathrm{C}(9)-\mathrm{C}(11)$ | $1.524(6)$ |
| $\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{C}(1)$ | $150.05(13)$ | $\mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{C}(12)$ | $121.6(2)$ |
| $\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{C}(10)$ | $51.99(10)$ | $\mathrm{CC}(7)-\mathrm{N}(1)-\mathrm{C}(12)$ | $118.2(3)$ |
| $\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$ | $85.03(9)$ | $\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{CC}(8)$ | $124.9(4)$ |
| $\mathrm{C}(3)-\mathrm{Ru}(1)-\mathrm{N}(1)$ | $174.90(16)$ | $\mathrm{Ru}(2)-\mathrm{C}(8)-\mathrm{C}(9)$ | $70.8(2)$ |
| $\mathrm{C}(2)-\mathrm{Ru}(1)-\mathrm{C}(10)$ | $164.90(14)$ | $\mathrm{Ru}(2)-\mathrm{C}(8)-\mathrm{C}(7)$ | $112.2(3)$ |
| $\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{C}(4)$ | $168.74(16)$ | $\mathrm{Ru}(2)-\mathrm{C}(9)-\mathrm{C}(10)$ | $72.1(2)$ |
| $\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{C}(5)$ | $82.42(13)$ | $\mathrm{Ru}(2)-\mathrm{C}(9)-\mathrm{C}(8)$ | $71.3(2)$ |
| $\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{C}(6)$ | $96.72(16)$ | $\mathrm{Ru}(2)-\mathrm{C}(9)-\mathrm{C}(11)$ | $125.9(3)$ |
| $\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{C}(8)$ | $79.66(11)$ | $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ | $117.5(4)$ |
| $\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{C}(9)$ | $74.69(11)$ | $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(11)$ | $119.044)$ |
| $\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{C}(10)$ | $47.40(11)$ | $\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(11)$ | $123.4(4)$ |
| $\mathrm{C}(5)-\mathrm{Ru}(2)-\mathrm{C}(10)$ | $128.86(18)$ | $\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)$ | $124.9(4)$ |
| $\mathrm{C}(6)-\mathrm{Ru}(2)-\mathrm{C}(8)$ | $162.16(18)$ | $\mathrm{Ru}(2)-\mathrm{C}(10)-\mathrm{Ru}(1)$ | $80.61(12)$ |
| $\mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{C}(7)$ | $119.4(3)$ | $\mathrm{Ru}(2)-\mathrm{C}(10)-\mathrm{C}(9)$ | $71.5(2)$ |



Fig. 2. Thermal ellipsoid plot of ta drawn at the 40 fre prohability level, with the adopled numbering scheme.
$2.93(2) \AA$ (lit.: 2.924(3) $\AA$ ) and short (mean Ru-Ru, $2.844(7) \AA$ (lit.: $2.839(6) \AA$ ). The bond lengths within the organic part of the molecule indicate extensive electron delocalisation within the pyridinium ring. There is little or no conjugation of the pyridinium ring with the 2 -methyl-1-propen-1-yl substituent as is indicated by the single $C(24)-C(25)$ bond of $1.478(8) \AA$ and the dihedral angle of about $50^{\circ}$ between these two unsaturated fragments.

The 'H NMR resonance for the interstitial hydride of the $\left[\mathrm{HRu}_{6}(\mathrm{CO})_{18}\right]^{-}$unit of 4 a is found at 16.46 ppm , in line with its unusual environment and in agreement with the literature [8]. The remaining 'H NMR signats could all be assigned to the cationic pyridinium counterpart of the salt.

Despite the fact that compound 5a could not be fully purified, its structure could be deduced unambiguously on the basis of its spectroscopic characteristics and their similarity with those reported for the isostructural compound ( $\mu-\mathrm{H}) \mathrm{Ru}_{3}(\mathrm{CO})_{9}\left[\mu_{3}-\boldsymbol{\eta}^{2}-\mathrm{CH}_{3} \mathrm{C}=\mathrm{NCH}_{2} \mathrm{CH}_{3}\right]$, which has been characterised crystallographically [19]. The FD mass spectrum of 5a showed an isotopic pattem characteristic for the presence of three ruthenium atoms around $m / e=682$ (based on the ${ }^{101}$ Ru-peak), corresponding to a stoichiometry of $\mathrm{Ru}_{3}(\mathrm{CO})_{9}(\mathrm{iPt}-\mathrm{SAI}+$ 2 H ). The distribution of the 17 hydrogen atoms over the ligand and metal core could readily be inferred from ' H NMR. A singlet resonance is found at -17.84 ppm , indicating the presence of a bridging hydride. The septet at 4.04 ppm and doublet at 0.99 ppm are mutually cou-
pled and can be ascribed to the isopropyl substituent at nitrogen. The remaining resonances were mutually connected. Decoupling experiments revealed the occumence of a $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{H}) \mathrm{CH}_{2}$-fragment. So the structural formula for 5a can be written as ( $\mu$ $\mathrm{H}) \mathrm{Ru}_{3}(\mathrm{CO})_{9}\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{C}=\mathrm{N}\right.$-iPT)]. Interestingly, both the methylene protons and the methyl protons of the two isopropyl units of 5a lack diastereotopicity in ${ }^{1}$ H NMR, indicating either the presence of a centre of symmetry or fluxional behaviour. The latter is more likely as it has been reported that the $5 \mathrm{e}^{-}$-donating imine ligand in $\left(\mathrm{H}_{\mathrm{H}} \mathrm{Ru}_{3}(\mathrm{CO})_{9}\left[\mathrm{CH}_{3} \mathrm{C}=\mathrm{NCH}_{3} \mathrm{CH}_{3}\right]\right.$ is fluxional in solution, as a result of which the ${ }^{7} \mathrm{H}$ NMR signal for the methylene protons lacks diastereotopicity [19]. The fluxional process in this complex has been described as a restricted oscillatory motion of the organic ligand, coupled to hydride edge hopping and axial-radial CO-exchange on two of the three nuthenium atoms. The carbonyl 1 R-bands of ( H ) $\mathrm{Ru}_{3}(\mathrm{CO})_{9}\left[\mathrm{CH}_{3} \mathrm{C}=\mathrm{NCH}_{2} \mathrm{CH}_{3}\right]$ in cyclohexane solution are found at $2091(\mathrm{~m}), 2064(\mathrm{~s}), 2036(\mathrm{vs}), 2020(\mathrm{~s})$, $2007(\mathrm{~m}), 2002(\mathrm{~m}), 1996(\mathrm{~m}), 1977(\mathrm{br}) \mathrm{cm}^{-1}$. Both the frequencies and their intensities are very similar to those found for 5 a in hexane solution, indicating structural equivalency.

The molecular structure of $\mathbf{6 b}$ is shown in Fig. 3. Selected bond lengths and angles are given in Table 4. This dinuclear ruthenium complex also features the well-known 'saw-horse' $\mathrm{Ru}_{2}$ (CO) ${ }_{6}$ core, in which the nuthenium atoms are bridged by a $6 \mathrm{e}^{-}$-donaring $\mu^{2}$ -$\eta^{3}$-allyl-aminocarbene ligand that was formed by double metallation ( $\mathrm{C}_{\mathrm{im}}$ and $\mathrm{C}_{\boldsymbol{r}}$-atoms) and dehydrogenation ( -2 H ) of a t-butylsenecialdimine molecule. Formally, the metallacycle composed of the atonis Rur(1)-$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ constitutes a muthenacyclopentadiene unit. In contrast to the commonly encountered $\eta^{5}$-coordination mode for metallacyclopentadiene moieties, the ruthenacyclopentadiene unit in $\mathbf{6}$ is $\boldsymbol{\eta}^{\frac{1}{-}} \mathbf{c o o r}-$ dinated. There is no bonding interaction between $\operatorname{Ru}(2)$ and $\mathrm{C}(7)$; the $\mathrm{Ru}(2)-\mathrm{C}(7)$ distance amounts to $2.614(3) \AA$. This can be attributed to the presence of the amino-substituent on C(7) causing redistribution of electrons over the ligand skeleton. The N-C(7) bond of 1.326 (4) A clearly indicates partial double bond character. Donation of electrons of the nitrogen lone pair to $C(7)$ is further established by the planar geometry around the $N(1)$ atom. These structural characteristics point to a significant carbene character of $\mathrm{C}(7)$. A similarty coordinated type of allyl-aminocarbene ligand is presems in $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left[\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}(\mathrm{H}) \mathrm{CN}(\mathrm{H})-\mathrm{t}-\mathrm{Bu}\right]$, which was formed in a reaction of the azaallylidene complex $\mathrm{Fe}_{2}(\mathrm{CO})_{3}[\mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{H})=\mathrm{N}(\mathrm{H})-\mathrm{t}-\mathrm{Bu}]$ with diphenylacetylene (the authors, however, make no notice of this specific structural aspect of this complex, for which an X-ray crystal structure has been detennined; see Ref. [20]). These amino-substituted metallacyclopentadiene

Table 3
Selected bend distances ( $\dot{A}$ ) and bond angles (deg) of 4a

| Residue 1 |  |  |  |
| :---: | :---: | :---: | :---: |
| RuA 1 - $\operatorname{Rut}(2)$ | $2.8935(9)$ | $\mathrm{Ru}(4)-\mathrm{C}(10)$ | 1.8750 |
| Rus(1)-Ru(3) | 2.838099) | Ru(4)-C(11) | $1.892(7)$ |
| $\mathrm{Ru}(1)-\mathrm{Ru}(4)$ | $2.9277(9)$ | $\mathrm{Ru}(4)-\mathrm{C}(12)$ | $1.894(7)$ |
| $\mathrm{Ru}(1)-\mathrm{Ru}(5)$ | $2.870749)$ | Ru(5)-C(13) | $1.864(1)$ |
| $\mathrm{Ru}(2)-\mathrm{Ru}(3)$ | $2.9091(9)$ | $\mathrm{Ru}(5)-\mathrm{C}(14)$ | $1.879(7)$ |
| $\mathrm{Ru}(2)-\mathrm{Ru}(5)$ | $2.8577(9)$ | $\mathrm{Ru}(5)-\mathrm{C}(15)$ | $1.890(7)$ |
| Ru(2)-Ru(6) | $2.8428(9)$ | Ru(6)-C(16) | $1.874(7)$ |
| Ru(3)-Ru(4) | 2.881 (9) | $\mathrm{Ru}(5)-\mathrm{C}(17)$ | 1.870088 |
| Ru(3)-Ru(6) | 2.8798(9) | $\mathrm{Ru}(6)-\mathrm{C}(18)$ | $1.869(8)$ |
| Ru(4)-Ru(5) | 2.8512(9) |  |  |
| Ru(4)-Ruf6) | 2.8538(9) | C(1)-O(1) | 1.136(9) |
| Ru(5)-Ru(6) | 2.9504(9) | $\mathrm{C}(2)-\mathrm{O}(2)$ | $1.135(9)$ |
|  |  | $\mathrm{C}(3)-\mathrm{O}(3)$ | 1.149(9) |
| Ru(1)-H(1) | 2.03 (6) | $\mathrm{C}(4)-\mathrm{O}(4)$ | $1.134(8)$ |
| $\mathrm{Ru}(2)-\mathrm{H}(1)$ | $2.03(6)$ | $\mathrm{C}(5)-\mathrm{O}(5)$ | 1.126 (9) |
| Ru(3)-H(1) | 2.03 (6) | $\mathrm{C}(6)-\mathrm{O}(6)$ | 1.152(9) |
| $\mathrm{Ru}(4)-\mathrm{H}(1)$ | 2.03 (6) | C(7)-O(7) | 1.14.3(9) |
| $\mathrm{Ru}(5)-\mathrm{H}(1)$ | 2.016 ) | $\mathrm{C}(8)-\mathrm{O}(8)$ | 1.141 (10) |
| Ru(6)-H(1) | 2.06 (6) | $\mathrm{C}(9)-\mathrm{O}(9)$ | 1.144(11) |
|  |  | $\mathrm{C}(10)-\mathrm{O}(10)$ | $1.142(8)$ |
| Rif(1)-C(1) | 1.892(7) | C(11) Of(1) | $1.139(9)$ |
| Ru(1)-C(2) | 1.884(7) | $\mathrm{C}(12)-0(12)$ | $1.130(8)$ |
| Ru(1)-C(3) | $1.875(7)$ | C(13)-0(13) | 1.145 (10) |
| Ru(2)-C(4) | $1.881(6)$ | C(14)-O(14) | 1.149(9) |
| $\mathrm{Ru}(2)-\mathrm{C}(5)$ | $1.895(7)$ | $\mathrm{C}(15)-\mathrm{O}(15)$ | 1.136 (8) |
| Ruf( )-C(6) | $1.872(7)$ | $\mathrm{C}(16)-\mathrm{O}(16)$ | 1.136 (9) |
| Ru(3)-C(7) | 1.876(7) | C(17)-O(17) | 1.147(1) |
| Ru(3)-C(8) | 1.862(8) | $\mathrm{C}(18)-\mathrm{O}(18)$ | 1.143(10) |
| Ru(3)-C(9) | $1.868(8)$ |  |  |
| $R u(2)-R u(1)-R u(3)$ | $61.0093)$ | $R u(1)-R u(4)-R u(3)$ | 58.41(3) |
| Ru(2)-Ru(1)-Ru(4) | 88.38 (3) | $\mathrm{Ru}(1)-\mathrm{Ru}(4)-\mathrm{Ru}(5)$ | 59.55(3) |
| $\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(5)$ | $59.44(3)$ | Ru(1)-Ruf(4)-Ru(5) | $89.87(3)$ |
| Ru(3)-Rux(1)-Ru(4) | 60.1003 ) | $\mathrm{Ru}(3)-\mathrm{Ru}(4)-\mathrm{Ru}(5)$ | $90.45(3)$ |
| $\mathrm{Ru}(3)-\mathrm{Ru}(1)-\mathrm{Ru}(5)$ | 91.073 (3) | $\mathrm{Ru}(3)-\mathrm{Ru}(4)-\mathrm{Ru}(6)$ | $60.2003)$ |
| $\mathrm{Ru}(4)-\mathrm{Ru}(1)-\mathrm{Ru}(5)$ | 58.90 (3) | $\mathrm{Ru}(5)-\mathrm{Ru}(4)-\mathrm{Ru}(6)$ | 62.28(3) |
| Ruf(1)-Ru(2)-Ru(3) | 58.56(3) | $\mathrm{Ru}(1)-\mathrm{Ru}(5)-\mathrm{Ru}(2)$ | 60.68(3) |
| $\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(5)$ | 59.88(3) | $\mathrm{Ru}(1)-\mathrm{Ru}(5)-\mathrm{Ru}(4)$ | $61.55(3)$ |
| $\mathrm{Rup}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(6)$ | 90.78 (3) | $\mathrm{Ru}(1)-\mathrm{Ru}(5)-\mathrm{Ru}(6)$ | 89.09 (3) |
| $\mathrm{Ru}(3)-\mathrm{Ru}(2)-\mathrm{Ru}(5)$ | 89.90 (3) | $\mathrm{Ru}(2)-\mathrm{Ru}(5)-\mathrm{Ru} \mathbf{4}^{4}$ ) | 90.59(3) |
| Ru(3)-Ru(2)-Ru(6) | 60.08(3) | $\mathrm{Ru}(2)-\mathrm{Ru}(5)-\mathrm{Ru}(6)$ | 58.58(3) |
| Ru(5)-Ru(2)-Ru(6) | 62.34(3) | $\mathrm{Ru}(4)-\mathrm{Ru}(5)-\mathrm{Ru}(6)$ | 58.90 (3) |
| $\mathrm{Ras}(1)-\mathrm{Rut}(3)-\mathrm{Rus}(2)$ | 60.44(3) | $\mathrm{Ru}(2)-\mathrm{Ru}(6)-\mathrm{Ru}(3)$ | 61.10(3) |
| $\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(4)$ | 61.49(3) | Ru(2)-Ru(6)-Ru(4) | 90.84(3) |
| Ru(1)-Ru(3)-Ru(6) | 91.16(3) | Ru(2)-Ru(6)-Ru(5) | $59.08(3)$ |
| $\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(4)$ | 88.84(3) | $\overline{\mathrm{Ku}}$ (3)-Ru(6)-Ku(4) | 60.49(3) |
| Ru(2)-Ru(3)-Ru(6) | 58.82(3) | Ru(3)-Ru(6)-Ru(5) | 88.66(3) |
| $\mathrm{Ru}(4)-\mathrm{Ru}(3)-\mathrm{Ru}(6)$ | 59.31(3) | Ru(4)-Ru(6)-Ru(5) | 58.81(3) |
| $\mathrm{Ru}(1)-\mathrm{C}(1)-\mathrm{O}(1)$ | 174.5(6) | $\mathrm{Ru}(4) \ldots \mathrm{C}(10)-\mathrm{O}(10)$ | 173.86 (6) |
| Ru(1)-C(2)-O(2) | 174.9(6) | $\mathrm{Ru}(4)-\mathrm{C}(11)-\mathrm{O}(11)$ | 175.46) |
| Rus 1)-C(3)-O(3) | 17637(6) | $\mathrm{Ru}(4)-\mathrm{C}(12)-\mathrm{O}(12)$ | 175.06) |
| Ruf(2)-C(4)-O(4) | 174.8(6) | Ru(5)-C(13)-O(13) | 174.4(7) |
| Ru(2)-C(5)-O(5) | 175.5(6) | Ru(5)-C(14)-O(14) | 174.4(7) |
| $\mathrm{Ru}(2)-\mathrm{C}(6)-0(6)$ | 176.0f6) | Ru(5)-C(15)-O(15) | 175.8(6) |
| Ru(3)-C(7)-047) | 174.8(7) | Ru(6)-C(16)-O(16) | 175.4(6) |
| $\mathrm{Ru}(3)-\mathrm{C}(8)-\mathrm{O} 8)$ | 175.047) | $\mathrm{Ru}(6)-\mathrm{C}(17)-\mathrm{OX} 17)$ | 173.2(7) |
| $\mathrm{Ru}(3)-\mathrm{C}(9)-\mathrm{O}(9)$ | 175.78) | $\mathrm{Ru}(6)-\mathrm{C}(18)-\mathrm{O}(18)$ | $173.9(6)$ |
| Residue 2 |  |  |  |
| $\mathrm{N}(1)-\mathrm{C}(19)$ | 1.335(8) | C(21)-C(23) | 1.371(9) |
| $\mathrm{N}(1)-\mathrm{C}(24)$ | $1.354(7)$ | C(23)-C(24) | 1.377(8) |

Table 3 (continued)

| Residue 2 |  |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{N}(1)-\mathrm{C}(29)$ | 1.509(8) | C(24)-C(25) | 1.472(8) |
| C(19)-C(20) | 1.36099) | $\mathrm{C}(25)-\mathrm{C}(26)$ | 1.310(9) |
| C(20)-C(21) | $1.391(9)$ | $\mathrm{C}(26)-\mathrm{C}(27)$ | $1.490(10)$ |
| C(21)-C(22) | $1.498(10)$ | C(26)-C(28) | $1.497(11)$ |
| $\mathrm{C}(19)-\mathrm{N}(1)-\mathrm{C}(24)$ | $120.7(5)$ | $\mathrm{C}(21)-\mathrm{C}(23)-\mathrm{C}(24)$ | 127.8(6) |
| $\mathrm{C}(19)-\mathrm{N}(1)-\mathrm{C}(29)$ | $118.2(5)$ | $\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{N}(1)$ | 118.065) |
| $\mathrm{C}(24)-\mathrm{N}(1)-\mathrm{C}(29)$ | 121.065 | C(23)-C(24)-C(25) | 122.145) |
| $\mathrm{N}(1)-\mathrm{C}(19)-\mathrm{Cl} 20)$ | $122.0(6)$ | C(24)-C(25)-C(26) | 127.7(5) |
| $\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$ | 119.6 (6) | $\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$ | 124.56) |
| $\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$ | $121.066)$ | C(25)-C( 26$)-\mathrm{C}(38)$ | 119.96) |
| C(20)-C(2)-C(23) | $116.9(6)$ | C(27)-C(26)-C(28) | 115.66 ) |
| $\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(23)$ | 122.1(6) |  |  |

complexes (Fig. 4, type B) constitute structural intermediates between the classic $\eta^{5}$-coordinated metallacyclopentadiene complexes (type A) and the novel $\sigma-\eta^{2}$ coordinated bis-amino-substituted metallacyclopentadiene complex $\mathrm{Os}_{4}(\mathrm{CO})_{11}\left[\mu-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CC}\left(\mathrm{CH}_{3}\right)=\right.$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~K} \mu_{3} \mathrm{~S}\right)$ [21], which contains two aminocarbene units, in combination with a $\pi$-coordinated olefin moiety (type C).

The carbene character of $\mathrm{C}(7)$ is clearly reflected by its ${ }^{13} \mathrm{C}$ NMR chemical shift of 211.3 ppm . This is comparable to the chemical shift of the aminocarbene carbon atom in $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left[\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right.$ $\mathrm{C}(\mathrm{H}) \mathrm{CN}(\mathrm{H})-\mathrm{t}-\mathrm{Bu}$ of 213.3 ppm [19] and in the range of $200-240 \mathrm{ppm}$ where metal carbene resenances are usually observed [22-24]. The IR friyuency of the $\mathrm{N}-\mathrm{H}$ proton of 6 b is found at $3420 \mathrm{~cm}^{-1}$.

### 3.3. Possible formation pathways of the complexes

By using the SAI ligand (as opposed to MAD) cyclometallation of $\mathrm{C}_{\boldsymbol{\beta}}$ is effectively blocked, and in-


Fig. 3. Thermal ellipsoid plot of 6 drawn at the $40 \%$ probability level, with the adopted numbering scheme.
deed cyclometallation at $C_{a}$, with formation of 2 , has become the dominant reaction. This enables us to study the reactivity of this azaaliyl compound in mone detail [4]. A likely reaction pathway leading to 2, involving $\sigma$ - N coordination of SAI to a coordinalively unsaturated ruthenium carbonyl centre followed by $\mathrm{C}_{\beta} \mathrm{H}$ activation on an adjacent ruthenium centre and subsequent transfer of the abstracted hydride back to the ligand, has been described previously [3].

During formation of the allyl-imine ligand in 3, the parent SAI molecule has been doubly metallated at the $\mathrm{C}_{\gamma}$-atom. Most likely the first $\mathrm{C}-\mathrm{H}$ activation is facilitated by coordination of the senecialdimine via its lone pair on nitrogen to an unsaturated ruthenium carbonyl fragment (Scheme 3). Subsequent cyclometallation leads

Table 4
Selected bond distances ( $\mathbf{A}$ ) and hond angles (deg) of 6 b

| Ru(1)-Ru(2) | 2.744977 | Rus)-C(6) | 1.914 (2) |
| :---: | :---: | :---: | :---: |
| Ru(1)-C(7) | $2.085(2)$ | Ruf(2)-C(5) | 1.913(3) |
| Rut 1)-C(10) | $2.075(3)$ | $\mathrm{Ru}(2)-\mathrm{C}(4)$ | 1.924(3) |
| Ru(1)-C(3) | $1.945(2)$ | $\mathrm{N}(1)-\mathrm{C}(12)$ | 1.796(3) |
| Ruf(1)-C(1) | 1.899(2) | $\mathrm{N}(1)-\mathrm{C}(7)$ | 1.32644) |
| Ruf1)-C(2) | 1.94013) | C(7)-C(8) | 1.409+) |
| Ruf 2 ) $\cdots$ C(7) | 2.614(3) | $\mathrm{C}(8)-\mathrm{C}(9)$ | 1. $488(4)$ |
| Rut2)-C(8) | $2.245(2)$ | C(9)-C(10) | 1.t020(3) |
| Ru(2)-C(9) | $2.227(3)$ | C(9)-C(11) | 1502(4) |
| Rut 2 )-C(10) | $2.217(2)$ |  |  |
| Ru(2)-RLA 1)-C(1) | 145.36(8) |  |  |
| $\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{C}(2)$ | 108.62(7) | C(6)-Rual ${ }^{\text {- }}$ C(13) | 92.17(10) |
| Ru(2)-Ru(1)-C(3) | 100.59(8) | C(7)-N(1)-C(12) | 131.8(2) |
| Ru (2)-Ru(1)-C(7) | 63.81(7) | $\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)$ | [27.1(2) |
| Ru(2)-Ru(1)-C(10) | 52.5677) | $\mathrm{Ru}(1)-\mathrm{Cl} 7)-\mathrm{N}(1)$ | (25.4(2) |
| C(2)-Ru(1)-C(10) | 161.18(10) | $\mathrm{Ru}(1)-\mathrm{C}(7)-\mathrm{C}(8)$ | 112.31(17) |
| C(3)-Ruf 1 -C(7) | 164.37(10) | $\mathrm{Ru}(2)-\mathrm{Cl} 8)-\mathrm{C}(7)$ | 87.51 (15) |
| C(7)-Ru(1)-C(10) | 79.54(10) | $\mathrm{Ru}(2)-\mathrm{C}(8)-\mathrm{C}(9)$ | 70.4H(1+) |
| Ru(1)-Ru(2)-C(4) | 164.63(8) | C(7)-C(8)-C(9) | 115.72 ) |
| $\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{C}(5)$ | 93.36 (8) | $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ | 113.5(2) |
| $\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{C}(6)$ | $93.1098)$ | $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(11)$ | 121.12) |
| $\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{C}(8)$ | 71.69(7) | $\mathrm{C}(10)-\mathrm{C} 9)-\mathrm{C}(11)$ | 125.32) |
| $\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{C}(9)$ | $73.55(7)$ | $\mathrm{Ru}(2)-\mathrm{C}(9)-\mathrm{C}(11)$ | $127.12(17)$ |
| $\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{C}(10)$ | 47.99(7) | $\mathrm{Ru}(1)-\mathrm{C}(10)-\mathrm{Ru}(2)$ | 79.459) |
| $\mathrm{C}(5)-\mathrm{Ru}(2)-\mathrm{C}(10)$ | 1+1.17(10) | $\mathrm{Ru}(1)-\mathrm{C}(10)-\mathrm{Cl} 9)$ | $116.07(18)$ |
| $\mathrm{C}(6)-\mathrm{Ru}(2)-\mathrm{C}(8)$ | 156.000 10) | $\mathrm{Ru}(2)-\mathrm{C}(10)-\mathrm{C}(9)$ | 71.999 (1) |



A


B


C

Fig. 4. Coordination behaviour of some metallacycles in dinuclear complexes.

$$
\begin{gathered}
\mathrm{Ru}_{3}(\mathrm{CO})_{12} \\
+\mathrm{CO} \|-\mathrm{CO} \\
{\left[\mathrm{Ru}_{3}(\mathrm{CO})_{11}\right]} \\
-L \|+L
\end{gathered}
$$



$$
+x^{1} \|_{-x^{1}}
$$

Coces



3

$$
\begin{align*}
& X^{1}, X^{2}=C O \text { or } \mathrm{Au}(\mathrm{CO})_{4} \\
& X^{\prime} \neq X^{2}  \tag{6}\\
& \mathrm{~L}=\mathrm{R}-\mathrm{SAI}
\end{align*}
$$

Scheme 3. Proposed stepwise formation of $\mathbf{3}$ and e from senecialdimine and $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$.
to the six atom membered azaruthenacyclohexadiene unit. The second $\mathrm{C}_{\gamma}-\mathrm{H}$ metallation will take place on an adjacent ruthenium centre and results in the formation of 3 after reductive elimination of $\mathrm{H}_{2}$.

The formation of the pyridinium ion in $\mathbf{4 a}$ is the result of the coupling of two SAI molecules in a complex sequence of $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{N}$ bond activation and $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{C}$ bond formation processes. Overall net elimination of one molecule of isopropylamine has taken place. There are several possible reaction paths leading to the fommation of this pyridiniun ion. As no intermediates have been identified, no attempt will be made to speculate about the one that actually occurred. However, the crucial reaction step, in which the two senecialdimine molecules are connected via $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ coupling, may well have proceeded via a $[4+2]$ cycloaddition.

During formation of 5 a the olefin moiety of the SAI ligand has been hydrogenated and the imine $\mathrm{C}-\mathrm{H}$ bond has been metallated. The source of the hydrogen taken up by $5 a$ is most likely the hydrogen that is liberated during formation of the complexes $3 \mathbf{a}$ and $4 \mathbf{4}$, which both contain a dehydrogenated SAI ligand.
Compound 6 is formed for $\mathrm{R}=\mathrm{t}$ - Bu , but not for $\mathbf{R}=\mathrm{iPr}$ as indicated by ${ }^{\prime} \mathrm{H}$ NMR spectra of crude reaction mixtures. This suggests that metallation of $\mathrm{C}_{\mathrm{im}}$ leading to 6 is triggered by the presence of the bulky t -Bu substituent on the adjacent N -atom. A likely reaction pathway leading to 6 is given in Scheme 3: metallation of $\mathrm{C}_{\gamma}$ takes place after initial coordination of the SAI ligand via its lone pair on nitrogen to a coordinatively unsaturated ruthenium carbonyl unit. Subsequently, metaliation of $\mathrm{C}_{\text {im }}$ may take place after breaking of the Ru-N bond. This crucial labilisation of the Ru-N bond is clearly enhanced hy the presence of a bulky t -Bu substituent. Hydride transfer to the imine N -atom and second metallation of $\mathrm{C}_{\gamma}$ and elimination of $\mathrm{H}_{2}$, results in the formation of 6 .

## 4. Conclusions

Substitution of the $\mathrm{H}_{\beta}$-atom by a methyl group effectively blocks metallation of the $\mathrm{C}_{\beta}$-atom of the monoazadiene during thermal reactions with $\mathrm{Ru}_{3}(\mathrm{CO})_{1}$ Metallation of the $\mathrm{C}_{\mathrm{a}}$-utom has become the kinetically favoured reaction, whereas also metallation of the $\mathrm{C}_{\text {im }}$ and $\mathrm{C}_{\gamma}$-atoms is observed. One of the $\gamma$-metallated organometallic produets contains a novel $\mu_{2}-\eta^{3}$-allylaminocarbene ligand, the second of this type reported thus far. The unusual geometry of this molecule is the result of electron delocalisation of the amino lone pair over the molecule. In addition a trisubstituted pyridinium moiety has been formed from two monoazadienes.

## 5. Supplementary material available

Tables of final atomic coordinates and equivalent isotropic thermal parameters and further details of the crystal structure determinations can be obtained from one of the authors (A.L.S.).

## Acknowledgements

We thank J.-M. Emsting for recording several NMR spectra, G. U-A-Sai and R. Fokkens for the mass spectra and Professor K. Vrieze for his stimulating interest. The investigation was supported in part (W.P.M.. W.J.J.S. and A.L.S.) by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for Scientific Research (NWO).

## References

[1] C.I. Elsevier. W.P. Mul and K. Vrieze. Inarg. Chim. Acfa. 198-200 (1992) 689.
[2] W.P. Mul, CJ. Elsevier and J. Spaans. J. Organomet. Chem. 402 (1991) 125.
[3] W.P. Mul, C.J. Elsevier, L.H. Polm. K. Vrieze, M.C. Zoraberg. D. Heijdenrijk and C.H. Stam, Organometallics, 10 (1991) 2247.
[4] O.C.P. Beers, J.C.P. Delis, W.P. MuL C.J. Elsevier, K Vrieze. W.J.J. Smeets and ALL. Spek, Inorg. Chem., 32 (1993) 3640.
[5] H.R. Schulten. Int. J. Mass Sprectrosc. Lom Phys., 32 (1979) 97.
[6] O. Duebner and W, von Miller, Chem, Ber., 16 (1883) I664.
[7] H.C. Barany. E.A. Braude and M. Pianka, J. Chern Soc., (1949) 1898.
[8] C.R. Eady. PF. Jackson, B.F.G. Johnson, J. Lewis, M.C. Malatesta M. McPartlin and W.J.H. Nelson. J. Chemi Soc. Datton Trans., (1980) 383.
[9] A.L. Spek, J. Appl. Cristallogr., $2 /$ (1988) 578.
[10] N. Walket and D. Stuart, Acta Crestullugr. Sect. A:, 39 (1983) 1.58.
[11] G.M. Sheldrick, shel xi86 Progran for Crrsbal Sirucrure Refinement, University of Görtingen, Germany, 1986.
[12] A.J.C. Wilson (ed.). Imenational Tables for Crustallography. Vol. C, Kluwer, Dordrechs, 1992.
[13] G.M. Sheldrick, shaws93 Pragram for Crystal Siructure Determination, University of Göttingen, Germany, 1993.
[14] A.L. Spek, Acta Crstallogr. Sect. A:, 46 (1990) C34.
[IS] L.H. Polm. W.P. Mul. CJ. Elsevier, K. Vrieze, M」N. Chrisubphersen and C.H. Stam, Pohhedrom, 7 (1988) 2521.
[16] W.P. Mul, C.J. Elsevier. L.H. Polm, K. Vreze, M.C. Zoutberg, D. Heijdenrijk and C.H. Stam, Organomerallics, 10 (1991) 2447.
[17] L.H. Polm. W.P. Mul, C.J. Elsevier, K. Vrieze. M.J.N. Christophersen and C.H. Stam. Ors anometallicy. 7 (1988) 423 .
[18] P.L. Rodrique. M. van Merssche and P. Piret. Acta Censtallogr. Sect. B:. 25 (1969) 519.
[19] S. Aime, R. Gobetio. F. Pudova, M. Botn, E. Rosenberg and R.W. Gellert. Organomiallics, 6 (1987) 2974.
[3] T.E. Sneant, C.A Mirkin, K -I. 1.il, S.-R.T. Nguyen, W.-C Teng, H.L. Beckman, G.L. Geoffroy. A.L. Rheingoid and B.S. Haggerty, Organemerallics, 11 (1992) 2613.
[2l] R.D. Adams. G. Chen. S. Sun. J.T. Tanner and T.A. Wolfe. Organometullics. 9 (1990) 251.
[2?] D.I. Candin. R Setinkaya and M.F. Lappert. Chem. Rer., 72 (1972) 545.
[23] M.A. Galop and W.R. Roper, Adi. Organomet. Chem. 25 (1986) 121.
[24] W.R. Roper. J. Orgunomet. Chem, 300 (1986) 167.


[^0]:    TSuffixes to the atoms refer to: $\left[\left(\mathrm{CH}_{3}\right)_{2}\right]_{9}[\mathrm{C}]_{\mu}=[\mathrm{CH}]_{\alpha}[\mathrm{CH}]_{\mathrm{im}}=\mathrm{NR}$.

[^1]:    Corresponding author.

[^2]:    ${ }^{2}$ Datia for $5 \mathrm{Sa}{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 250.1 \mathrm{MHz}, 297 \mathrm{~K}$ ): 4.04 (sept, $\left.6.5 \mathrm{~Hz} . \mathrm{NC}(H) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) .2 .67$ (d. $\left.7.0 \mathrm{~Hz}, \mathrm{~N}=\mathrm{CCH}_{2}\right) .2 .10$ (ursept. $\left.7.0,6.5, \mathrm{CH}_{2} \mathrm{C}(\mathrm{H})\left(\mathrm{CH}_{3}\right)_{2}\right), 1.09\left(\mathrm{~d}, 6.5 \mathrm{~Hz}, \mathrm{CC}(\mathrm{H})\left(\mathrm{CH}_{3}\right)_{2}\right), 0.99(\mathrm{~d}$. 6.5 Hz. $\left.\mathrm{NC}(\mathrm{H})\left(\mathrm{CH}_{3}\right)_{2}\right),-17.84$ ( s . hydride): IR (hexane. $\nu(\mathrm{CO})$ $\mathrm{cm}^{-1}$ ): 2089 (w), 2063 (s), 2043 (w), 2034 (vs), 2019 (s). 2002 (m). 1994 (w), 1977 (w), 1974 (w, br), FD-MS: m/e 682 (682).

